metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42⋊3Dic3, C12.19C42, (C4×C12)⋊1C4, (C2×C12).6Q8, (C4×Dic3)⋊3C4, (C2×C4).13D12, C12.28(C4⋊C4), (C2×C4).2Dic6, C4.33(D6⋊C4), C3⋊1(C4.9C42), (C2×C12).104D4, C4.24(C4×Dic3), (C22×C6).42D4, (C22×C4).73D6, C12.9(C22⋊C4), C4.8(Dic3⋊C4), C42⋊C2.1S3, C4.12(C4⋊Dic3), C22.17(D6⋊C4), C23.23(C3⋊D4), C6.7(C2.C42), C2.8(C6.C42), C22.3(Dic3⋊C4), C23.26D6.7C2, (C22×C12).120C22, C22.10(C6.D4), (C2×C3⋊C8)⋊1C4, (C2×C6).3(C4⋊C4), (C2×C12).56(C2×C4), (C2×C4).139(C4×S3), (C2×C4).20(C3⋊D4), (C2×C4).72(C2×Dic3), (C2×C4.Dic3).7C2, (C2×C6).89(C22⋊C4), (C3×C42⋊C2).1C2, SmallGroup(192,90)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42⋊3Dic3
G = < a,b,c,d | a4=b4=c6=1, d2=c3, ab=ba, cac-1=ab2, dad-1=ab-1, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 216 in 94 conjugacy classes, 47 normal (39 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, C23, Dic3, C12, C12, C2×C6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C3⋊C8, C2×Dic3, C2×C12, C2×C12, C22×C6, C42⋊C2, C42⋊C2, C2×M4(2), C2×C3⋊C8, C4.Dic3, C4×Dic3, C4⋊Dic3, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C4.9C42, C2×C4.Dic3, C23.26D6, C3×C42⋊C2, C42⋊3Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C42, C22⋊C4, C4⋊C4, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2.C42, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4.9C42, C6.C42, C42⋊3Dic3
(1 36 22 42)(2 34 23 40)(3 32 24 38)(4 26 18 47)(5 30 16 45)(6 28 17 43)(7 29 14 44)(8 27 15 48)(9 25 13 46)(10 33 21 39)(11 31 19 37)(12 35 20 41)
(1 6 10 9)(2 4 11 7)(3 5 12 8)(13 22 17 21)(14 23 18 19)(15 24 16 20)(25 36 28 33)(26 31 29 34)(27 32 30 35)(37 44 40 47)(38 45 41 48)(39 46 42 43)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 17)(2 16)(3 18)(4 20)(5 19)(6 21)(7 24)(8 23)(9 22)(10 13)(11 15)(12 14)(25 43 28 46)(26 48 29 45)(27 47 30 44)(31 38 34 41)(32 37 35 40)(33 42 36 39)
G:=sub<Sym(48)| (1,36,22,42)(2,34,23,40)(3,32,24,38)(4,26,18,47)(5,30,16,45)(6,28,17,43)(7,29,14,44)(8,27,15,48)(9,25,13,46)(10,33,21,39)(11,31,19,37)(12,35,20,41), (1,6,10,9)(2,4,11,7)(3,5,12,8)(13,22,17,21)(14,23,18,19)(15,24,16,20)(25,36,28,33)(26,31,29,34)(27,32,30,35)(37,44,40,47)(38,45,41,48)(39,46,42,43), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,17)(2,16)(3,18)(4,20)(5,19)(6,21)(7,24)(8,23)(9,22)(10,13)(11,15)(12,14)(25,43,28,46)(26,48,29,45)(27,47,30,44)(31,38,34,41)(32,37,35,40)(33,42,36,39)>;
G:=Group( (1,36,22,42)(2,34,23,40)(3,32,24,38)(4,26,18,47)(5,30,16,45)(6,28,17,43)(7,29,14,44)(8,27,15,48)(9,25,13,46)(10,33,21,39)(11,31,19,37)(12,35,20,41), (1,6,10,9)(2,4,11,7)(3,5,12,8)(13,22,17,21)(14,23,18,19)(15,24,16,20)(25,36,28,33)(26,31,29,34)(27,32,30,35)(37,44,40,47)(38,45,41,48)(39,46,42,43), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,17)(2,16)(3,18)(4,20)(5,19)(6,21)(7,24)(8,23)(9,22)(10,13)(11,15)(12,14)(25,43,28,46)(26,48,29,45)(27,47,30,44)(31,38,34,41)(32,37,35,40)(33,42,36,39) );
G=PermutationGroup([[(1,36,22,42),(2,34,23,40),(3,32,24,38),(4,26,18,47),(5,30,16,45),(6,28,17,43),(7,29,14,44),(8,27,15,48),(9,25,13,46),(10,33,21,39),(11,31,19,37),(12,35,20,41)], [(1,6,10,9),(2,4,11,7),(3,5,12,8),(13,22,17,21),(14,23,18,19),(15,24,16,20),(25,36,28,33),(26,31,29,34),(27,32,30,35),(37,44,40,47),(38,45,41,48),(39,46,42,43)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,17),(2,16),(3,18),(4,20),(5,19),(6,21),(7,24),(8,23),(9,22),(10,13),(11,15),(12,14),(25,43,28,46),(26,48,29,45),(27,47,30,44),(31,38,34,41),(32,37,35,40),(33,42,36,39)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | ··· | 12N |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | - | + | - | + | - | + | ||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | S3 | D4 | Q8 | D4 | Dic3 | D6 | Dic6 | C4×S3 | D12 | C3⋊D4 | C3⋊D4 | C4.9C42 | C42⋊3Dic3 |
kernel | C42⋊3Dic3 | C2×C4.Dic3 | C23.26D6 | C3×C42⋊C2 | C2×C3⋊C8 | C4×Dic3 | C4×C12 | C42⋊C2 | C2×C12 | C2×C12 | C22×C6 | C42 | C22×C4 | C2×C4 | C2×C4 | C2×C4 | C2×C4 | C23 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 4 | 2 | 2 | 2 | 2 | 4 |
Matrix representation of C42⋊3Dic3 ►in GL4(𝔽73) generated by
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
30 | 60 | 0 | 0 |
13 | 43 | 0 | 0 |
46 | 0 | 0 | 0 |
0 | 46 | 0 | 0 |
0 | 0 | 46 | 0 |
0 | 0 | 0 | 46 |
0 | 72 | 0 | 0 |
1 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 72 | 72 |
13 | 43 | 0 | 0 |
30 | 60 | 0 | 0 |
0 | 0 | 59 | 66 |
0 | 0 | 7 | 14 |
G:=sub<GL(4,GF(73))| [0,0,30,13,0,0,60,43,1,0,0,0,0,1,0,0],[46,0,0,0,0,46,0,0,0,0,46,0,0,0,0,46],[0,1,0,0,72,1,0,0,0,0,0,72,0,0,1,72],[13,30,0,0,43,60,0,0,0,0,59,7,0,0,66,14] >;
C42⋊3Dic3 in GAP, Magma, Sage, TeX
C_4^2\rtimes_3{\rm Dic}_3
% in TeX
G:=Group("C4^2:3Dic3");
// GroupNames label
G:=SmallGroup(192,90);
// by ID
G=gap.SmallGroup(192,90);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,253,64,387,1123,102,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=c^3,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a*b^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations